The Preparation:

  1. The surgeon and the team prepare for the operating room in the same manner as in non-robotic surgeries, except that the machine requires extensive sterilization and set-up.
  2. The nurses and surgical assistants will set up and test the procedure of the robotic system before the surgery. That will take at least 15 mins.
  3. The patient, already anesthetized, is bought into and/or positioned under the robotic arms.
  4. The surgeon then enters, is seated at the console interface and after brief communication with the assistants at the table, begins directing the robot in the procedure.
  5. Throughout the surgery, the surgeon does not aproach the table or patient.

Pediatric Surgery: Over 50 different types of abdominal and thoracic procedures have been performed in pediatric patients. Neonates and infants have also undergone robotic procedures safely and with excellent results. In particular, robotic surgery may present advantages for the Kasai procedure, choledochal cyst repair, and thoracic tumor excision. It may also be beneficial in abdominal and thoracic procedures requiring reconstruction. The major limitation is the size of the robotic instruments in relation to the pediatric patient.

Gynecology: Robotic surgery has shown promise in hysterectomy for both benign and malignant disease, as well as myomectomy. In myomectomy, the robot may provide substantial benefit by allowing minimally invasive fertility sparing options. It is also beneficial for tubal reconstruction. The robot may provide potential advantages for pelvic reconstructive surgery.

General Surgery: With present technology, robotic surgery is best suited to procedures limited to one quadrant of the abdomen that present challenging access: specifically those requiring fine dissection, micro-suturing or reconstruction. Reports have been published with use for cholecystectomy, but with no findings of improved outcomes nor safety. Reports for solid organ surgery, as adrenalectomy, have not found particular advantage, noted increased cost, but did prove feasibility. Procedures where it may be of particular value include Heller myotomy, paraesophageal hernia repair, gastric bypass, gastric resection for neoplasm, biliary reconstructive surgery, transhiatal esophagectomy, transthoracic esophageal surgery, distal pancreatectomy with splenic preservation, and selected colorectal procedures. It may hold promise for pancreatic head resection and hepatectomy, but experience to date is limited. In resections for neoplasm, robotic surgery may help to enhance the completeness of lymph node dissection.
Although there is a substantial cost disadvantage to using the robot for simple procedures such as cholecystectomy and fundoplication, these procedure may present an excellent opportunity for surgeons early in their robotic learning curve to acquire increasingly more advanced skills.

Urology: Robotic surgery has been shown to offer substantial advantages over conventional minimally invasive surgery in several urological procedures. While the most mature outcomes data in the field of robotics are for radical prostatectomy, robotics may also offer advantages for cystectomy, pyeloplasty, nephrectomy (partial, complete and donor) and ureteral reimplantation. Resection of bladder neoplasm may also be approached robotically with a lower incidence of postoperative ileus. Robotic surgery may ultimately replace open surgery for some complex urological procedures.

Thoracic Surgery: Robotic surgery offers clear benefits in the resection of solid thoracic tumors, particularly those located in the apex of the chest. Esophageal tumors such as leiomyomas may also be resected robotically.

Otorhinolaryngology/Head and Neck Surgery: Transoral robotic surgery is presently under study. Preliminary data indicate utility for transoral resections of benign and malignant lesions of the pharynx and larynx. Oncologic resections of the supraglottis, tonsil and tongue base have been shown to be feasible with potential advantages compared to traditional approaches. Preliminary evidence indicates that these advantages may include avoidance of mandibulotomy, avoidance of tracheostomy, decreased operative time, reduced requirements for complex reconstructions, and avoidance of external excisions.
Limitations of the present technology preclude transnasal and otologic procedures because of instrument size and functionality. Current otorhinolaryngology procedures are performed under IRB approval as FDA approval is still pending. Further use of robotic surgery in the head and neck will await the development of smaller instruments and more flexible robotic tools.

Limitations across specialties: Overall, the Clinical Applications subgroup felt that the 3 major impediments to the clinical use of robots are cost, training issues and lack of outcomes data. Among the previously mentioned technical limitations, the primary technical limitation of robotic surgery is the difficulty in performing procedures that extend over a large area, such as multiquadrant abdominal surgery. These limitations will likely ease as robotic devices evolve.
The use of surgical registries will be important in future studies of robotic surgery, particularly those evaluating short- and long-term surgical outcomes.